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Abstract—In recent years, image and video surveillance have
made considerable progresses to the Intelligent Transportation
Systems (ITS) with the help of deep Convolutional Neural
Networks (CNNs). As one of the state-of-the-art perception
approaches, detecting the interested objects in each frame of
video surveillance is widely desired by ITS. Currently, object
detection shows remarkable efficiency and reliability in standard
scenarios such as daytime scenes with favorable illumination
conditions. However, in face of adverse conditions such as the
nighttime, object detection loses its accuracy significantly. One of
the main causes of the problem is the lack of sufficient annotated
detection datasets of nighttime scenes. In this paper, we propose a
framework to alleviate the accuracy decline when object detection
is taken to adverse conditions by using image translation method.
We propose to utilize style translation based StyleMix method to
acquire pairs of day time image and nighttime image as training
data for following nighttime to daytime image translation. To
alleviate the detail corruptions caused by Generative Adversarial
Networks (GANs), we propose to utilize Kernel Prediction Net-
work (KPN) based method to refine the nighttime to daytime
image translation. The KPN network is trained with object
detection task together to adapt the trained daytime model
to nighttime vehicle detection directly. Experiments on vehicle
detection verified the accuracy and effectiveness of the proposed
approach.

Index Terms—nighttime object detection, image translation,
kernel prediction network

I. INTRODUCTION

ITH the fast development of computer vision and deep
Convolutional Neural Networks (CNNs), visual data
understanding in image and video has attracted a lot of attention
[11, [2], [3], [4], [5], [6], [7]. For example, in the Intelligent
Transportation Systems (ITS), detecting the vehicles in each
frame of the traffic surveillance video is important to extract
the real-time traffic flow parameters [8] for the efficient traffic
control and obtain the vehicle trajectories [9] for the calibrated
traffic model simulation, etc.
Most of existing researches focus on daytime perception task
through supervised learning, however, they generalize badly
on adverse conditions such as nighttime scenarios [10]. The
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adversity of nighttime scenario poses two challenges for the
success of perception task at nighttime: 1) nighttime data with
a large amount of annotations is usually scarce compared to the
large-scale daytime data, since accurate annotation of nighttime
images is relatively hard to obtain. 2) The visual hazards, such
as underexposure and noise, of nighttime images cause the
extracted features corrupted.

One traditional way to solve this is to fine-tune the already-
trained daytime perception model on the limited nighttime data,
and hopefully it can perform well on nighttime scenarios, but
it requires extra time and additional-labeled nighttime data
for model fine-tuning. Another traditional way [10] might use
Generative Adversarial Networks (GANs) based image to image
translation methods in an unpaired way, such as CycleGAN [11]
and UNIT [12], to transfer daytime images to fake nighttime
images. Paired daytime and nighttime images are hard to obtain
in the real-world applications, due to the dynamic traffic and
environment changes. This kind of image translation considers
this problem as domain adaptation for model fine-tuning on
synthetic nighttime images without labeling the nighttime data.
However, these methods also need extra time for model fine-
tuning. In addition, GAN based image translation suffers from
model collapse and does not preserve content details very well
[13], [12], [11], [14], [15]. Bottleneck layers in a general deep
generator hurt the learning ability of convolution kernels due to
downsampling and upsampling operations, resulting in possible
losing some structure details. Besides, unpaired training data
of different domains limits the detail-preserving ability of
generators due to the lack of pixel-wise correspondence.

In this paper, we would like to reuse the daytime perception
model to nighttime scenarios. Our basic idea is to maximally
use the pretrained daytime perception model, similar to works
[16], [17], which could be easily extended to the nighttime
tasks. Reversely to the traditional methods, we transfer the
nighttime images back to the daytime style with the detail-
preserving to reuse the trained daytime perception model, as
shown in Figure 1. The strengths of this reverse way are
obvious and promising: 1) there are no extra training efforts
for the already trained daytime perception model and no needs
to manually label the nighttime data; 2) image transfer could
reduce the domain distribution discrepancy between daytime
and nighttime data; 3) detail-preserving image transfer could
better maintain the structure details than the GAN based image
transfer.

Specifically, we propose a detail-preserving unpaired domain
transfer method for this task, which mainly contains two
components: 1) Style-transfer based StyleMix, 2) Kernel
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Figure 1: Illustration of the domain reuse problem: a) traditional method with style transfer and the nighttime model fine-tuned
from the daytime model, b) the proposed detail-preserving Night-to-Day translation method without changing the daytime

model.

Prediction Network (KPN) based nighttime to daytime image
transfer. Without paired daytime-nighttime image pairs, we
propose to utilize style translation based StyleMix method,
inspired by AugMix [18], to acquire pairs of daytime and
nighttime images as training data for the following nighttime
to daytime image transfer. We can effectively alleviate the detail
corruption caused by GAN: 1) The synthetic nighttime image
and corresponding daytime image translation can provide pixel-
wise correspondence for night-to-day translation. 2) Kernel
prediction network based method can refine the nighttime to
daytime image translation because the per-pixel kernel fusion
can effectively utilize the neighboring region for each pixel
and could learn more spatial context representing structure
information. The proposed method can conduct daytime and
nighttime vehicle detection with just one daytime model, which
is more convenient in real-world applications.

In this paper, we choose the vehicle detection problem in
the traffic surveillance video as a case study for the proposed
approach. The KPN network is trained with object detection
task together to adapt the trained daytime model to fit nighttime
domain directly. Experimental results on a vehicle video dataset
in daytime and nighttime verified the accuracy and effectiveness
of the proposed approach. The contributions of this paper are
summarized in the following:

« We propose a detail-preserving unpaired domain transfer
method for nighttime vehicle detection to adapt the trained
daytime model directly for nighttime vehicle detection.

« To solve the problem of lack of paired daytime-nighttime
image pairs, we propose to utilize style translation based
StyleMix method to obtain pairs of daytime image and
nighttime image as training data. These training data are
utilized by KPN network to perform nighttime to daytime
image transfer.

o The comprehensive experimental results on a vehicle detec-

tion dataset from the video surveillance scenario in daytime

and nighttime show that the proposed method achieved better

vehicle detection performance in nighttime scenario.

In the following of this paper, Section II reviews the related
work. Section III explains the proposed method. Experiment
setting and results are described in Section IV, followed by a
conclusion in Section V.

II. RELATED WORK

Object detection at nighttime: The state-of-the-art per-
formance in object detection is rapidly improving in recent
years. One-stage (SSD [19], YOLO [20], RetinaNet [21]) and
two-stage (Faster R-CNN [22], Mask R-CNN [23]) detection
frameworks have achieved promising performance in real-world
applications. They generally require a large amount of manually
labeled data for supervised learning. Nonetheless, most of them
operate well at daytime, under favorable illumination conditions,
and scale badly to nighttime scenarios with challenging lighting
conditions. Further, manual annotation of nighttime images
are hard and time-consuming, because even human cannot
clearly discern objects in adverse nighttime scenario. Nighttime
detection task has attracted a lot of attention recently. Domain
specific works [24], [25], [26] explore the human detection at
nighttime by considering the type of cameras. Other works [27],
[28] pertain to vehicle detection in driving scenarios. Domain-
invariant representations [29], [30] or fusion works [31] are
designed to be robust to illumination changes. Image translation
work [32] aims to improve retrieval-based localization at
nighttime. In this work, we focus on vehicle detection at
nighttime in traffic surveillance scenarios. We aim to adapt the
daytime detection model to nighttime detection for reusing the
daytime domain knowledge. It is also interesting to explore the
robustness of daytime model from other perception tasks [33],



[34], e.g., object tracking [35], [36], [37], [38], at nighttime
scenario in the future.

Learning from synthetic data: In general, CNNs perform
much worse when there is a domain shift between training and
testing sets, which hurts the generalization ability of CNNs.
Data augmentation techniques, like random cropping and affine
transformation, are one way to improve the stability of networks
in unfamiliar domains. Effective use of synthetic data [15], [39],
[40] is another choice to achieve the same goal. It has been
used in a lot of computer vision tasks such as crowd counting
[15], semantic segmentation [39], person re-identification [40],
etc. One common way of reducing dataset distribution bias
is to make the synthetic data much more photo-realistic and
minimize the domain shift at the same time. Some domain
adaptation methods [41], [42], [43] can be used to learn the
domain-invariant features to align the domains of synthetic and

real data, so the model generalization ability can be improved.

In this paper, we utilize pairs of synthetic nighttime and real
daytime images based on style-transfer method for training
a detail-preserving night-to-day network. Then, we adapt our
trained translation network to transfer any nighttime image to
daytime version so as to reuse the trained daytime detection
model.

Style transfer: Many computer vision tasks need to translate
an input image from one domain to another domain, which are
viewed as the image translation problem. Generative adversarial
networks (GANs) based methods are promising for image
stylization, which aim to sample from a probability distribution
to generate images. GANs include two models: a generative
model and a discriminative model. The former captures the
critical data distribution for image generation, while the

latter aims to distinguish between real and generated samples.

CycleGAN [11] extends the GAN-based image translation
method to an unsupervised framework, where no paired data is
required. It performs a full translation cycle both from source
domain to target domain and from target domain back to source

domain, and then it could regularize the high cycle consistency.

Subsequent works encourage a shared latent feature space via
a variational autoencoder (UNIT [12]). ComboGAN [44] and
SMIT [45] extend to multiple domain translation. GcGAN [46]
proposed that the translation network should keep geometry
consistency.

Although unpaired image translation by GAN-based methods
are popular for style transfer, the generated images might
lack details due to the common existing downsampling and
upsampling network operations. In this paper, we propose
to train a detail-persevering network to achieve the unpaired
domain transfer for nighttime object detection.

III. METHODOLOGY

In this section, we propose the detail-preserving unpaired
domain transfer for performing high accuracy object detection
in the nighttime without retraining the detectors on daytime
dataset. We introduce the whole framework in Sec. III-A and
reveal the challenges. Then, our two main contributions, i.e.,
scene-aware pixel-wise filtering in Sec. III-B and StyleMix in
Sec. III-C, help to address the challenges and achieve much
better detection accuracy.

A. Detail-preserving Unpaired Domain Transfer for Nighttime
Object Detection

We propose to perform nighttime object detection by trans-
ferring input nighttime images to the corresponding daytime
versions for further object detection. This task could be simply
formulated as

I=¢(1), (1)

where the ¢(-) denotes a transfer function that can map the
nighttime image I to the corresponding daytime version. A
straightforward way is to set ¢(-) as a popular generator that
can be trained with the adversarial loss. Nevertheless, we
argue that GAN-based transfer is hard to recover the details
in the nighttime image, which is rather important for accurate
object detection. As shown in Figure 2, the GAN-based method
might destroy the detailed car structure, leading to missing
detection. Actually, the night-to-day translation for object
detection requires that the object-related details, e.g., car’s
structure, should be preserved while different scene patterns
in the night should be perceived and properly mapped to its
daytime versions, posing two challenges for deep learning-
based solutions: @ Popular deep generator based methods easily
harm the object details due to the common existing bottleneck
layers where the input image is transferred by downsampling
and upsampling. ® It is hard to get paired dataset which is
significantly important for training detail-persevering networks
with pixel-wise correspondence.
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Figure 2: Image translation results of GAN-based method and
the proposed method: a) target nighttime image, b) translated
daytime image of a) by GAN-based method CycleGAN [11],
c) translated daytime image of a) by the proposed method.

To address the first issue, we propose the scene-aware pixel-
wise filtering in Sec. III-B for night-to-day transformation.
Different to all existing works that employ a DNN as the
transformer directly, our method maps the input image through
a single-layer filtering whose kernels are predicted by an offline-
trained DNN denoted as the kernel prediction network. Note
that, the single-layer filtering (without any downsampling and
upsampling operations) avoids the risk of missing important
object-related details. Meanwhile, the DNN helps understand
the scene and predict spatial-variant kernels for effective
transformation. Specifically, kernel prediction network predicts
a kernel for each pixel to capture local spatial context
information to preserve more details, e.g., structure information.
Recent works [47], [48], [49], [50] have proved that per-pixel
kernel prediction network can achieve image recovery with
better details. To address the second challenge, we propose a
style-transfer-based data augmentation method, i.e., StyleMix
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Figure 3: The proposed object detection pipeline at night with Night-to-Day image translation.

in Sec. III-C, to generate nighttime-daytime image pairs for
training the kernel prediction network.

We show the whole framework in Figure 3. Intuitively, our
method is a pre-process module transferring the input nighttime
image to daytime version for further object detection, which
is supported by a novel and simple data augmentation method,
i.e., StyleMix.

B. Scene-aware Pixel-wise Filtering

We propose the scene-aware pixel-wise filtering for the night-
to-day transformation. Specifically, we reformulate Eq. (1) as

2
3)

where ® denotes the pixel-wise filtering, K is a pixel-wise filter
€ R{Fxk)xhxw Each vector in channel dimension K(i,j) €
R *k) is a per-pixel kernel and can be applied to the k x k
neighborhood region of each pixel in the input nighttime image
I by element-wise multiplication. The ¢(-) denotes the kernel
prediction network and is used to perceive the input image and
predict the suitable kernel for each pixel.

Then, we acquire the daytime version I of the input image.
Since it is pixel-wise filtering of the input nighttime image,
it could largely preserve the image details without corruption.
To fully leverage rich neighborhood information of every
image pixel, a large kernel size k is desired, however, the
computational and memory cost will increase as well. The
kernel size k in our implementation is set to 5.

The framework of kernel prediction network is shown in
Figure 4. In this work, the training input data for KPN
is synthetic nighttime images from Sec. III-C. Specifically,
two synthetic Mixed Nighttime images MN; and MNy with
different style conditions are fed into KPN, respectively. KPN
will output image-specific per-pixel filter for each image,
respectively. Then element-wise multiplying the specific filter
with the corresponding input image will generate the daytime
version image ii, =1, 2.

The basic loss function Epix(ii,i*) is the pixel-wise L4
distance between the ground truth daytime image I* and the
translated daytime image I,. It is defined as

I=K®&l,
with K = ¢(I),

Loix(L;, 1) = |I* = L||x. (4)

FPconv  ~ skip connect Pooling [~ f|Upsampling

Figure 4: Illustration of the kernel prediction network based
scene-aware pixel-wise filtering.

We also define a consistency 1oss Lpix—cons between il and
I, by measuring their L; distance. The equation is

Epixfcons(ilzi2) = Hil - i2||1- (5)

C. StyleMix: Bridging the Gap to Nighttime Data

The style-transfer-based method is utilized to generate
nighttime-daytime image pairs for KPN training. To bridge
the shift of synthetic nighttime and target nighttime data, we
propose the SytleMix strategy to embody the diversity of
nighttime scenarios.

Specifically, style-transfer network can preserve the structure
of input content image and stylize the content image according
to the input style reference to implement image translation.
As shown in Figure 3, we adopt a pretrained style transfer
network, whitening and coloring transforms (WCT?), to finish
daytime to nighttime image translation. For the input of WCT?,
daytime images are the content image and five real nighttime
images act as the style reference. Five style reference images for
following StyleMix are selected depending on the illumination
condition of target nighttime scenarios. During daytime to
nighttime image translation, StyleMix is involved to reduce
the distribution shift of translated style and target nighttime
style. It works in the way shown in Figure 5. Specifically, for
each daytime input image, three style augmentation chains
out of fiver style reference are randomly sampled, each of
which consists of one to two randomly selected style transfer
operations. Then the transferred images from these style
augmentation chains are combined by pixel-level fusion to
acquire mixed nighttime image MN; in Sec. III-B. Pixel-
wise fusion is implemented by pixel-wise convex operations
between translated nighttime images and convex coefficients.
We randomly sample from a Dirichlet (¢, ..., «) distribution
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Figure 5: Illustration of the proposed StyleMix method to bridge the gap to nighttime data.
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Figure 6: Sample visualization of the proposed StyleMix to
generate synthetic nighttime images from real daytime images.

to construct the 3-dimensional vector of pixel-wise convex
coefficients. Figure 6 shows one example of the pixel-wise
fused synthetic nighttime image by StyleMix. The augmixed
output of StyleMix are the pixel-wise fusion result of translated
content image with different styles. It shows that StyleMix
can effectively generate various kinds of synthetic nighttime
images which are visually close to the real nighttime scene.

For detection task of the pipeline, we construct the de-
tection loss Lget(Det;, Det*) and the detection consistency
loss Ldet—cons(Det1, Dets). We adopt Smooth L; loss [51]
to calculate Lqet and Lget—cons. The total loss Lnop of the
pipeline is a weighted sum of Lyix, Lpix—cons, Ldet, and
Lget—cons. It is defined as

£N2D = Lpix + ﬁpix—cons + )\(Edet + Edet—cons); (6)

where A\ is set to 10 in our experiments.

IV. EXPERIMENTS
A. Datasets

In this paper, the public D&N-Car Benchmark [10] is utilized
to verify the effectiveness of the proposed approach. It is a real
traffic surveillance dataset in urban expressway scene recorded
in the city Xi’an, China. This dataset includes 1,200 daytime
images and 1,000 nighttime images with their ground truth

in the format of bounding boxes across different periods and
dates, each of which is with resolution 1,280x720. There are
total 57,059 vehicle instances in this dataset. The training set
consists of 1,000 daytime traffic images with manual ground-
truth labels, denoted as Day-training. The testing set includes
1,200 images, where 200 images are in daytime and 1,000
images are in nighttime. In the 200 daytime testing images,
100 images are in the normal traffic condition, denoted as Day-
normal, and the other 100 images are in the congested traffic
condition, denoted as Day-congested. The left 1,000 images
of testing set constitute 4 subsets of nighttime traffic images
(denoted as Nightl, Night2, Night3, Night4). The details of
the benchmark are shown in Table I. In the experiment, we
denote the labeled daytime traffic images (Day-training) as the
Source Domain S, and the unlabeled nighttime traffic images
as the Target Domain T.

Table I: Details of the D&N-Car Benchmark [10].

\ No. of images  No. of car instances  Time
Day-training ‘ 1000 32,456 19:10
Day-normal 100 3,173 19:00
Day-congested 100 4,539 14:30
Nightl 250 7,322 21:30
Night2 250 5,554 21:30
Night3 250 1,738 23:50
Night4 250 2,277 00:20

B. Experimental Setting

We conduct experiments on two different scenarios: 1).
Detect the vehicles during daytime by Faster R-CNN [22]
model trained on Day-training; 2). Detect the vehicles during
nighttime by trained Faster R-CNN model on Day-training
after the proposed night-to-day image translation. The detailed
experimental setting is as follows: 1) Scenario 1: We directly
train a Faster R-CNN model on the dataset Day-training in
a supervised way and test the images on Day-normal and
Day-congested, respectively; 2) Scenario 2: For style-transfer-
based StyleMix image translation aiming at acquiring pairs



of daytime and nighttime images, we utilize 1,000 images in
Day-training set and 5 style reference images for nighttime
images synthesis and augmixing styles. For KPN-based night-
to-day training, there are 2,000 augmixed nighttime images for
training in each epoch. Next, predicted daytime images are fed
into detection task to further fit the translated daytime image for
object detection. For inference, the trained KPN operates image
translation for real nighttime images (Nightl, Night2, Night3,
and Night4), and then trained daytime detection model tests
on translated nighttime images for performance evaluation.

We set the method that directly tests on nighttime images
with trained daytime model Faster R-CNN [22] as a baseline.
We also compare the proposed method with unpaired image
translation methods UNIT [12], CycleGAN [11], and GcGAN
[46] combining with Faster R-CNN in both day-to-night and
night-to-day directions. To train the image translation models,
the training dataset for daytime is the Day-training set and the
training set for nighttime is a combination of Nightl, Night2,
Night3, and Night4.

We built our translation and detection pipeline in PyTorch.
For object detection, we use ResNet50 as our backbone. For
detection training, we utilize Stochastic Gradient Descent
(SGD) to optimize our network and set the initial learning rate
to 0.0001 and decay it after every 10 epochs. The experiments
are conducted on a NVIDIA GTX 1080Ti GPU. For night-to-
day image translation training, we train KPN with SGD by
setting the learning rate to 0.002 for 200 epochs on two Tesla
V100 GPUs. For a comprehensive performance evaluation,
the widely-used object detection metric mAP (mean average
precision) is used for evaluating the vehicle detection results.
For all the experiments, the performance evaluation uses a
uniform threshold of 0.5 for the Intersection Over Union (IoU)
between the predicted bounding boxes and ground truth.

C. Results on Benchmark

We first report the detection results of one-stage detector SSD
[19] and two-stage detector Faster R-CNN [22] for Scenario 1,
shown in Table II. We can see that both of the mAP drop from
about 99% to 88% when the traffic is congested. The congested
situation increases the object detection difficulty, resulting in
a lower detection performance compared to the uncrowded
situation. Because there is not a clear difference in terms of
mAP between SSD and Faster R-CNN, we choose Faster R-
CNN as our baseline detector for following experiments.

Table II: Daytime vehicle detection results.

mAP(%) | SSD  Faster R-CNN
Day-normal 99.05 99.01
Day-congested | 88.35 88.57

D. Results compared to day-to-night translation methods

We compare the detection results of nighttime vehicle to
other image translation methods in a day-to-night direction.
According to Scenario 2, the proposed method performs vehicle
detection on translated daytime images obtained from KPN

by the daytime model obtained from Sec. I'V-C. However, for
comparison methods performing nighttime vehicle detection
in a day-to-night direction, they require additionally training
a nighttime model for nighttime vehicle detection, besides
the daytime model. For example, taking CycleGAN as the
day-to-night image translation method, we translate daytime
images to fake/synthetic nighttime images in an unpaired way,
and followed by training a Faster R-CNN,, detector on such
fake/synthetic nighttime images with the same annotations
of daytime images. Then we test the trained model on the
nighttime images for vehicle detection. The comparison results
are shown in Table III. We compare the detection results in the
form of mAP for each subset of nighttime traffic images and
the mean mAP for all of them. Day-to-night image translation
methods UNIT [12], CycleGAN [11], and GeGAN [46] perform
better than or comparable to the baseline Faster R-CNN which
directly tests on nighttime images with daytime model of
Sec. IV-C. Taking the dataset Night4 as an example, the
proposed method, based on night-to-day image translation
without retraining one more model, achieves the highest 92.94%
mAP, about 5.4% higher than Faster R-CNN,, + GcGAN,,
3.3% higher than Faster R-CNN,, + CycleGAN,;,,,, 4.8% higher
than Faster R-CNN,, + UNIT,,, and 5.9% higher than the
baseline Faster R-CNN. The proposed method achieves the
best mean mAP with 87.80% for all nighttime traffic images,
despite that Faster R-CNN,, + GcGAN,,, performs a little bit
better on the Nightl subset. We also provide a traditional
method Mean-BGS [52] performing vehicle detection through
background subtraction and the daytime model of SSD [19]
performing vehicle detection directly on nighttime images.
Both of them are worse than Faster R-CNN for nighttime
vehicle detection. As the corresponding detection results are
shown in Fig. 7, we can clearly see that the proposed method
is robust to various light conditions. UNIT, CycleGAN and
GcGAN based methods could not well detect vehicles under
poor light conditions and missed many black vehicles compared
to the proposed method, and Faster R-CNN without any image
translation does not perform well due to the domain shift of
daytime and nighttime scenarios.

Table III: Nighttime vehicle detection results based on day-
to-night translation. Note that the Faster R-CNN,, model is
trained on the fake/synthetic nighttime images.

Method \ mAP(%) | Nightl Night2 Night3 Night4 | Mean
Mean-BGS [52] 54.03 49.09 52.16 55.56 52.71
SSD [19] 74.06 73.78 84.02 87.00 79.71
Faster R-CNN [22] 74.84 74.05 85.63 87.05 80.39
Faster R-CNN,, [22]+ UNIT,, [12] 7056  77.13 8287  88.19 | 79.68
Faster R-CNN,, [22]+ CycleGAN,, [11] | 7939 8072 8872  89.66 | 84.62
Faster R-CNN,, [22]+ GcGAN, [46] 80.89 84.20 83.92 87.55 84.14
Proposed 80.25 84.81 93.20 92.94 87.80

E. Results compared to night-to-day translation methods

We also compare our method with these image trans-
lation methods in a night-do-day direction. Comparison
translation methods, UNIT,,; [12], CycleGAN,,, [11], and
GcGAN;,p4 [46], first translate nighttime images to daytime-
style images, and then these daytime-style images are fed
into the daytime model, obtained from Sec. IV-C, for vehicle
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Figure 7: Visualization results of nighttime vehicle detection. a)-e) are the detection results from Faster R-CNN [22],
Faster R-CNN,, + UNIT 42, [12], Faster R-CNN,, + CycleGAN,,, [11], Faster R-CNN,, + GcGAN2,, [46], and the proposed
method, respectively. Note: red bounding box indicates detection result.

Figure 8: Visualization results of image translation from nighttime to daytime. a) is target nighttime image, b) to e) are the
image translation results of UNIT,24 [12], CycleGAN, 5, [11], GcGAN,,24 [46], and proposed method, respectively.




detection. The results are shown in Table IV. It shows that
the proposed method could achieve the best mean mAP
performance than UNIT, CycleGAN, and GcGAN for nighttime
vehicle detection via night-to-day translation, demonstrating
the advances of the proposed method. This is because the
proposed method considers the per-pixel kernel fusion of
neighboring information for each pixel and the object detection
task during image translation training, preserving more features,
e.g., structure details, which are critical for the detection task.

Table IV: Nighttime vehicle detection based on night-to-day
translation.

Method \ mAP(%) | Nightl  Night2 Night3 Night4 | Mean
Mean-BGS [52] 54.03 49.09 52.16 55.56 52.71
SSD [19] 74.06 73.78 84.02 87.00 79.71
Faster R-CNN [22] 74.84 74.05 85.63 87.05 80.39
Faster R-CNN [22]+ UNIT, 4 [12] 6254 6286 8129  81.00 | 71.92
Faster R-CNN [22]+ CycleGAN,,, [11] 77.69 79.12 88.31 88.79 83.47
Faster R-CNN [22]+ GcGAN, 54 [46] 83.57 83.80 79.26 83.94 82.64
Proposed 80.25 84.81 93.20 92.94 87.80

Visualization results by the above mentioned image transla-
tion methods from nighttime to daytime are shown in Fig. 8.
It shows that the proposed method could recover the daytime
scenario with details. UNIT method suffers from model collapse
presenting poor local textures and details. Specifically, the
translated images are blurred, especially for the shape and
edge of vehicles inside the image. It is consist with the
lower detection performance in the form of mAP in Table
IV. CycleGAN could translate the texture of the vehicles from
nighttime to daytime, but it is not robust to the intense road
mirror reflections. It presents fake vehicles which do not exist
in source nighttime images, resulting in more false positive
detection samples. More black vehicles disappeared in the
translated images by CycleGAN. GcGAN is also sensitive to
such intense road mirror reflections, resulting in more fake
vehicles in the translated images. Although the translated trees
from the proposed method suffer from corruption, the goal
of our work is to accurately detect vehicles at nighttime, we
do not care much more about the tree corruption during the
night-to-day translation. It is obvious that the translated cars are
more natural with clear structures from the proposed method,
resulting in better detection performance in Table IV. This
is because the image translation training from nighttime to
daytime makes full use of paired synthetic data with pixel-
wise correspondence and per-pixel kernel fusion of neighboring
information which provides rich spatial context information.

F. Ablation Study

Table V: Ablation study of the proposed method for the
nighttime vehicle detection.

Method \ mAP(%) | Nightl Night2 Night3 Night4
Baseline 62.51 60.97 81.29 78.66
Baseline + StyleMix 75.90 76.20 88.20 86.90
Baseline + StyleMix + Zero 79.50 77.40 89.70 89.80
Baseline + StyleMix + Contrast 80.20 81.79 92.11 91.58

In this section, we evaluate the contribution of each step in
the proposed method: 1) training KPN without the StyleMix,

instead, given each daytime image, we randomly select two
style images from five style reference images to generate
two synthetic nighttime images based on image translation,
respectively. Two synthetic nighttime images are fed into KPN
for training combined with detection task. We view this method
as our Baseline in this section. 2) On the basis of step 1, we
augment the style references in depth and width, denoted as
Baseline + StyleMix. There are five style reference images
for StyleMix, out of which two are from the nighttime traffic
images of D&N-Car dataset. 3) For testing phase, we preprocess
the target nighttime images by Zero-Reference network [53]
to improve local contrast, then go through KPN for image
translation to daytime scenario and followed by detection task
via daytime detection model, denoted as Baseline + StyleMix +
Zero. 4) Different with the preprocessing of step 4, we enhance
the local contrast by improving the pixel value less than a
threshold, denoted as Baseline + StyleMix + Contrast. The
corresponding result of the proposed method in each step on
the four night subsets in terms of mAP evaluation metric is
shown in Table V.

We can clearly see the positive effect of each step with the
increasing mAP performance. Taking dataset Nightl for an
example, the baseline method could achieve 62.51% in mAP.
When augmenting and mixing the style reference images to
embody the diversity of synthetic nighttime scenarios, mAP in-
creases by about 13%. When prepossessing the target nighttime
images with Zero-Reference network and Contrast, the mAP
continues to increase to 79.50% and 80.20%, respectively.

We conduct ablation experiments to verify the effectiveness
of the style reference setting for StyleMix. We construct a
night-style image pool for style reference selection, which
consists of 21 images, 7 from nighttime dataset of D&N-Car,
i.e., nighttime traffic images used in this paper, 7 from BDD
dataset [54] with nighttime scene and the other 7 from WCT?
publicized project website!. We randomly choose 5 images
from this night-style image pool as style reference for the
whole image translation model. We conduct three experiments
with different style reference setting for StyleMix. There are
1, 2, and 5 images from the nighttime images of D&N-Car
dataset as different experiment settings: StyleMix,, StyleMix,
and StyleMix;. The detection results are shown in Table VI. It
turns out that the detection performance increases with more
night-style images involved from the D&N-Car dataset. It is
reasonable since we expect the StyleMix model to render the
synthetic nighttime image closer to the corresponding nighttime
style of nighttime images.

Table VI: Ablation study with different style reference setting.

Method \ mAP(%) | Nightl Night2 Night3 Night4 | Mean
Baseline + StyleMix,+ Contrast 76.27 79.51 91.76 91.69 84.80
Baseline + StyleMix, + Contrast | 80.20 81.79 92.11 91.58 86.42
Baseline + StyleMixs; + Contrast | 80.25 84.81 93.20 92.94 87.80

V. CONCLUSIONS

In this paper, we proposed a detail-preserving method to
implement the nighttime to daytime image translation and thus

Uhttps://github.com/clovaai/WCT2



adapt daytime trained detection model to nighttime detection.

We

firstly utilize style translation method to acquire paired

images of daytime and nighttime, which are hard to obtain in
real-world applications. We propose to stylemix the reference
styles to embody the diversity of synthetic nighttime scenarios.
The following nighttime to daytime translation is implemented
based on kernel prediction network to avoid texture corruption
and trained with detection task to make the translated daytime
image not only visually photo-realistic to the daytime scenario

but

also fit the detection task to reuse the daytime domain

knowledge. The proposed method can perform both daytime
and nighttime vehicle detection with one model. Experimental
results showed that the proposed method achieved effective
and accurate nighttime detection results.
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